欢迎来到专业的宏发范文网平台! 心得体会 党建材料 工作总结 工作计划 思想汇报 事迹材料 发言讲话 述职报告
当前位置:首页 > 范文大全 > 公文范文 > 正文

浅析钢筋混凝土结构耐久性改善措施(李景成)

时间:2022-02-21 15:32:09 浏览量:
 

摘要:随着钢筋混凝土结构规范要求越来越高,目前钢筋混凝土耐久性问题已引起广泛重视,影响钢筋混凝土结构耐久性的因素是多方面的,因此应在钢筋混凝土结构的设计、施工及维护的各个阶段采取有效可行的措施来提高钢筋混凝土结构的耐久性。

关键词:钢筋混凝土耐久性改善措施

一、前言

工程安全性与耐久性对我国当前土建工程建设具有重要探讨意义,建设部近年所作的一项调查表明,国内大多数钢筋混凝土建筑物在使用25~30年后即需大修,处于严酷环境下的钢筋混凝土建筑物使用寿命仅15~20年。有一部分工程建成后几年就出现钢筋锈蚀、混凝土开裂。因混凝土顺筋开裂和剥落,需要大修的屡见不鲜。从可持续发展的要求出发,这种现状会导致资源、能源不合理的消耗,并因大量失效或毁坏的结构物拆除而形成大量的垃圾。西方先行的国家在此方面的经历证明,混凝土结构修补和加固的费用比新建的还要大得多。随着生产的发展,一方面,处于严酷环境中的混凝土结构工程数量增多,另一方面水泥和混凝土材料的性能有了很大的变化,而现有关混凝土结构设计与施工的规范很少考虑这种情况。知识和观念陈旧,对混凝土结构耐久性的认识不足,耐久性设计和施工的技术不成熟,增加了当前混凝土结构工程的隐患。

二、钢筋混凝土结构的耐久性

所谓混凝土结构的耐久性是指该种结构在自然环境、使用环境及材料内部因素的作用下,保持其自身工作能力的性能。混凝土结构根据所处环境的不同可以划分为一般大气环境、海洋环境、土壤环境及工业环境等。混凝土结构材料内部因素的作用指的是材料的物理和化学作用,如混凝土的碳化、钢筋的锈蚀等。由钢筋混凝土耐久性引起的结构工作性能的改变包括混凝土结构件的承载能力降低,最终影响整个结构的安全性,其中建筑钢筋混凝土结构较为普通。

因此,钢筋混凝土结构耐久性失效的原因存在于结构的设计、施工及维护的各个环节。以往的乃至现在的结构工程设计中,普遍存在着重强度设计而轻耐久性设计的现象。我国颁布的混凝土结构设计规范中,除了一些保证混凝土结构耐久性构造措施之外,只是在正常使用极限状态验算中控制对结构耐久性设计并不起决定性的耐久性,常见的施工问题如混凝土质量不合格、钢筋保护层厚度不足都有可能导致钢筋提前锈蚀。另外,在结构的使用过程中,由于没有合理的维护而造成的结构耐久性降低也是不容忽视的,如对结构的碰撞、磨损以及使用环境的劣化,这都会使混凝土结构无法达到预定的使用年限。

钢筋混凝土结构是混凝土与钢筋的复合体,它的腐蚀形态可分为两种:一是由混凝土的耐久性不足,其本身被破坏,同时也由于钢筋的裸露、腐蚀而导致整个结构的破坏;二是混凝土本身并未腐蚀,但由于外部介质的作用,导致混凝土本身化学性质的改变或引入了能激发钢筋腐蚀的离子,从而使钢筋表面的钝化作用丧失,引起钢筋的锈蚀。因此,应着重从改善混凝土本身性能及防止钢筋锈蚀这两方面出发提高钢筋混凝土结构的耐久性。

三、钢筋混凝土锈蚀破坏及防止措施

1.钢筋混凝土锈蚀破坏

钢筋锈蚀是引起混凝土结构耐久性下降的最主要和最直接因素,目前对影响钢筋锈蚀的因素、锈蚀钢筋材料性能的变化、钢筋锈蚀的防护和检测等各方面均有较多的研究。

混凝土中钢筋的锈蚀破坏过程可分为三个阶段:阶段Ⅰ,从结构建成到钢筋表面钝化膜破坏;阶段Ⅱ,钢筋开始锈蚀,直到混凝土保护层出现顺筋开裂;阶段Ⅲ,钢筋加速锈蚀直到构件丧失承载能力。

混凝土在一种或多种外界作用下,材料的耐久性能会发生衰退,而逐渐失去了对其内部钢筋的保护作用。当钢筋外面的混凝土中性化或出现开裂等情况,钢筋失去了碱性混凝土的保护,钝化膜破坏并开始锈蚀。锈蚀的钢筋不但戴面积有所损失,材料的各项性能也会发生衰退,从而影响混凝土构件的承载能力和使用性能。混凝土中的钢筋锈蚀一般为电化学锈蚀。当二氧化碳、氯离子等腐蚀介质侵入时,混凝土的碱性降低,或者混凝土保护层受拉开裂等都将造成全部或局部钢筋表面的钝化状态破坏,同时钢筋表面的不同部位还会出现较大的电位差,形成阳极和阴极,在一定的环境条件下(如氧和水的存在),钢筋就开始锈蚀。锈蚀的形式一般为斑状锈蚀,即锈蚀分面在较广的表面面积上。

2.防止钢筋锈蚀的主要措施

防止钢筋锈蚀的根本途径不是控制外荷载引起的横向裂缝宽度,而是减慢二氧化碳、氧、水等腐蚀因子通过混凝土保护层向钢筋表面渗透扩散的速度,以及防止氯离子在钢筋表面的积聚。

办法有两类:

第一类是采用防护材料或外部措施,如采用喷塑(树脂)钢筋、钢筋表面涂锌、混凝土中掺加缓蚀剂、混凝土表面涂刷防护层、采用聚合物浸渍混凝土表层以及设置阴极保护设施等;

第二类比较方便和经济的办法则是利用和加强混凝土保护层自身的保护功能,其措施主要有以下几点:

(1)保证必需的保护层厚度

增加混凝土保护层厚度可显著地推迟腐蚀因子渗透到钢筋表面的时间,也可提高对钢筋锈蚀膨胀的抵抗力。混凝土碳化达到钢筋表面的时间与保护层厚度的平方成正比。所以增大保护层厚度能有效地推迟碳化时间。应注意,加大保护层厚度对耐久性有好处,但表面横向裂缝宽度增大,如建筑物有外观要求时就不能任意加大保护层厚度。

在施工时为保证钢筋的位置正确以及混凝土保护层必须满足设计要求等。钢筋的垫块,应采用细石混凝土或水泥砂浆制作,有条件时最好采用定型的塑料垫块,不得采用石子作垫块,严禁使用短钢筋作为垫块。

(2)提高混凝土的密实性

提高混凝土的密实性,减少内部微细孔函隙和毛细管通首是加强钢筋防腐蚀能力的最根本途径。它首先要严格控制水灰比。

为提高混凝土的密实性,施工时就要均匀振捣,严格控制振捣时间“防止偏振和漏振”还要认真加以养护。这样才能保证保护层的密实,并使水泥浆完全覆盖住钢筋以形成一层有效的隔离层。

同时还要注意合理的混凝土级配。粗骨料的直径也不宜过大。在同样水灰比下,骨料粒径增大会大大降低混凝土的抗渗性。

(3)控制混凝土拌和物中的氯盐含量

某些卤离子(如C1-、I-、Br-)对钝化膜有特殊的破坏作用。它们在钢筋保护层不被碳化或中性化的情况下也可以破坏钢筋钝化膜,使腐蚀过程得以进行。氯离子是这一类离子中最常遇到的。氯离子半径很小,穿透力强,很容易吸附在钢筋阳极区的钝化膜上,取代钝化膜中氧离子,使钢筋起保护作用的氢氧化铁变为无保护作用的氯化铁。氯化铁的深解度比氢氧化铁比氢氧化铁的溶解度大得多。由于氯离子到达钢筋表面的不均匀性,特别是氯离子作用在钢筋局部区域时,则局部区域为阳极,形成了大阴极小阳极的腐蚀。这种坑蚀或局部腐蚀对结构的危害较大。

因此必须严格控制氯离子的总量,即应对混凝土拌和物中的氯盐含量加以控制。同时海砂使用不慎也是引起钢筋锈蚀的原因之一,应尽量避免使用。

(4)合理的构件形式和配筋方式

构件尺寸不宜太小,尺寸过小,保护层不易保证,混凝土不易振实。构件外形也不宜复杂,棱角增多会使保护层厚度得不到保证,而且增加腐蚀因子的渗透面。一般说,梁要比板容易锈蚀破坏。

总的来说,钢筋混凝土的锈蚀破坏是一个重要问题。探讨钢筋混凝土的耐久性的机理和失效概率,找出有效的防护措施,提高结构使用寿命,改进其维修办法等已成为当前钢筋混凝土学科中的一个重大研究课题。

四、提高混凝土的耐久性

要提高混凝土的耐久性,必须降低混凝土的孔隙率,特别是毛细管孔隙率,最主要的方法是降低混凝土的拌和用水量。但是如果纯粹的降低用水量,混凝土的工作性将随之降低,又会导致捣实成型工作困难,同样造成混凝土结构不致密,甚至出现蜂窝等宏观缺陷,不但混凝土强度降低,而且混凝土的耐久性也同时降低。目前减少孔隙率的途径往往是掺入高效减水剂。

1.掺入高效减水剂

在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。

水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝装结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝状的絮凝体内的游离水释放出来,因而达到减水的目的。许多研究表明,当水灰比降低到0.38以下时,消除毛细管孔隙的目标便可以实现,而掺入高效减水剂,完全可以将水灰比降低到0.38以下。

2.掺入高效活性矿物掺料

普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料(硅灰、矿渣、粉煤灰等)中含有大量活性SiO2及活性Al2O3,它们能和水泥水化过程中产生的游离石灰及高硷性水化硅酸钙产生二次反应,生成强度更高,稳定性更优的低硷性水化硅酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的。有些超细矿物掺料,其平均粒径小于水泥粒子的平均粒径,能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的涌透路。此外,还能改善集料与水泥石的界而结构和界面区性能。这些重要的作用,对增进混凝土的耐久性及强度都有本质性的贡献。

3.消除混凝土自身的结构破坏因素

除了环境因素引起的混凝土结构破坏以外外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。例如,混凝土的化学收缩和干缩过大引起的开裂,水化热过高引起的温度裂缝,硫酸铝的延迟生成,以及混凝土的碱集料反应等。因皮,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素,限制或消除从原材料引入的碱、SO3、C1-等可以引起破坏和钢筋腐蚀物质的含量,加强施工控制环节,避名收缩及温度裂缝产生,提高混凝土的耐久性。

4.保证混凝土的强度

尽管强度与耐久性是不同概念,但又密切相关它们之间的本持联系是基本于混凝土的内部结构,都与水灰比这个因素直接相关。在混凝土能充分密实条件下,随着水灰比的降低,混凝土的孔隙率降低,混凝土的强度不断提高,一此同时,随着孔隙率降低,混凝土的抗渗性提高,因而各种耐久性指标也随之提高。在现代的高性能混凝土中,除掺入高效减水剂外,还掺入了活性矿物材料,它们不但增加了混凝土的致密性,而且降低或消除了游离氧化钙的含量。在大幅度提高混凝土强度的同时,也大幅度地提高了混凝土的耐久性。此外,在排除内部破坏因素的条件下,随着混凝土强度的提高,其抵抗环境侵蚀破坏的能力也越强。

综上所述,钢筋混凝土结构耐久性是一个重要也是迫切需要加以解决的问题。提高钢筋混凝土结构的耐久性与安全性,需要从结构的设计、检测评价、施工、材料等诸多方面考虑。尤其是在设计上要改变长期以来重强度而轻耐久性的观念,将耐久性和强度参数结合起来进行设计。

参考文献

赵国满、金伟良《结构可靠性理论》中国建筑工业出版社2000

作者简介

李景成,广东省四会市水利水电勘测设计院院长

    

推荐访问:耐久性 浅析 钢筋 混凝土结构 改善

猜你喜欢